Heterogeneous Graph Neural Networks for Keyphrase Generation

Jiacheng Ye¹*, Ruijian Cai¹*, Tao Gui²†and Qi Zhang¹†

School of Computer Science, Shanghai Key Laboratory of Intelligent Information Processing,
Fudan University, Shanghai, China

Institute of Modern Languages and Linguistics, Fudan University

{yejc19, 19210240253, tqui, qz}@fudan.edu.cn

EMNLP 2021

https://github.com/jiacheng-ye/kg_ gater

Introduction

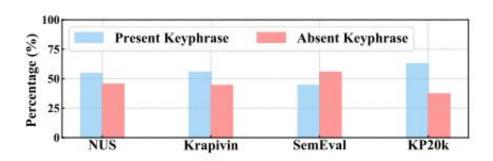


Figure 1: Proportion of present and absent keyphrases among four datasets. Although the previous methods for keyphrase generation have shown promising results on present keyphrase predictions, they are not yet satisfactory on the absent keyphrase predictions, which also occupy a large proportion.

Relying solely on the source document can result in generating uncontrollable and inaccurate absent keyphrases.

Method

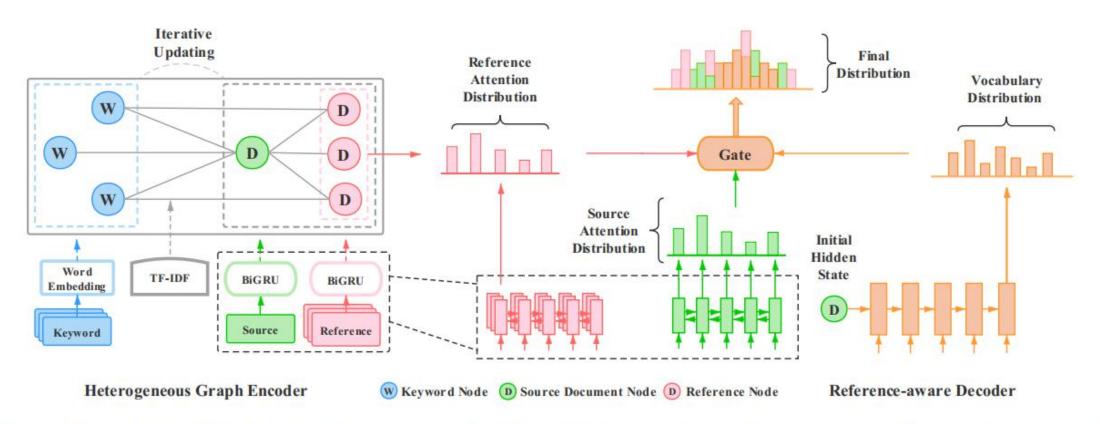
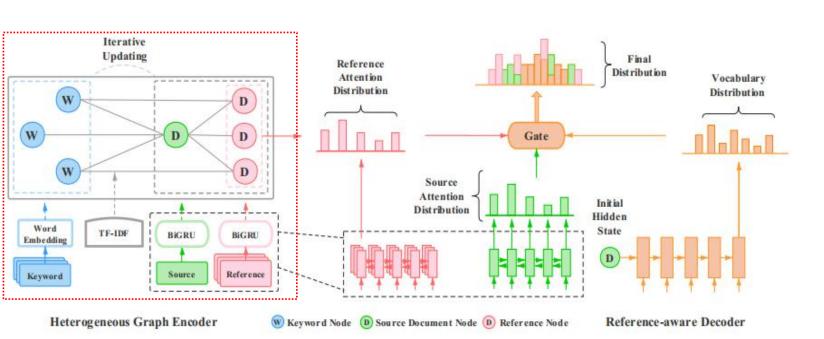


Figure 2: Graphical illustration of our proposed GATER. We first retrieve references using the source document, where each reference is the concatenation of document and keyphrases pair from the training set. Then we construct a heterogeneous graph and perform iterative updating. Finally, the source document node is extracted to decode the keyphrase sequence with a hierarchical attention and copy mechanism.

we first represent the source document and all the reference candidates as TF-IDF weighted uni/bigram vectors. Then, the most similar K references $\mathcal{X}^r = \{\mathbf{x}^{r_i}\}_{i=1,\dots,K}$ are retrieved by comparing the cosine similarities of the vectors of the source document and all the references.

Method



Graph Construction

$$G = \{V, E\}$$

$$V = V_w \cup V_d$$

$$V_w = \{w_i\} \ (i \in \{1, \dots, m\})$$

$$V_d = \mathbf{x} \cup \mathcal{X}^r$$

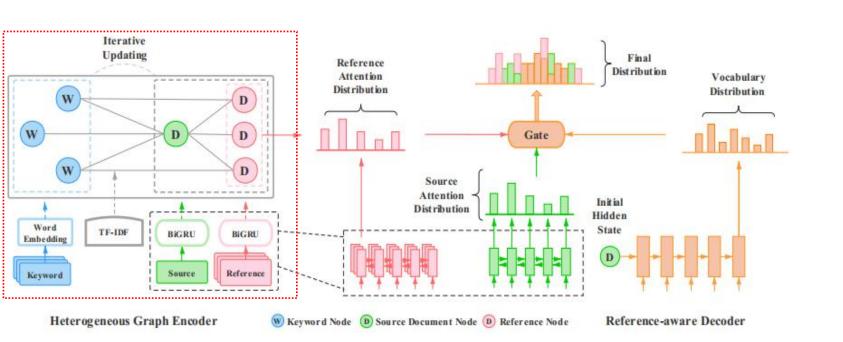
$$E = E_{d2d} \cup E_{w2d}$$

$$E_{d2d} = \{e_k\} \ (k \in \{1, \dots, K\})$$

$$E_{w2d} = \{e_{i,j}\} \ (i \in \{1, \dots, m\}, j \in \{1, \dots, K+1\})$$

Similarly, we also infuse TF-IDF values in the edge weights of E_{d2d} as a prior statistical n-gram similarity between documents.

Method



Graph Initializers

document node

 e^w

 $\mathbf{d} = [\overrightarrow{\mathbf{m}}_1; \overleftarrow{\mathbf{m}}_{L_{\mathbf{x}}}] \text{ and } \mathbf{m}_i = [\overrightarrow{\mathbf{m}}_i; \overleftarrow{\mathbf{m}}_i]$

keyword node

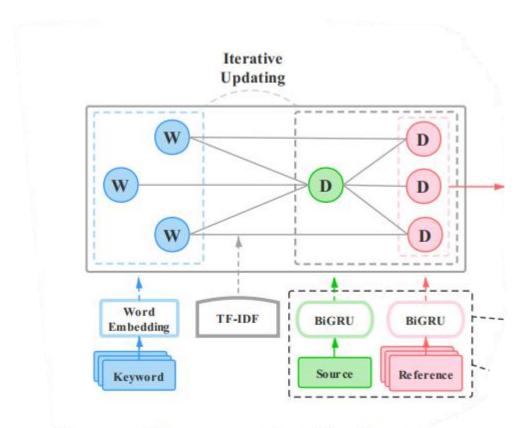
$$\mathbf{w}_i = \mathbf{e}^w(w_i).$$

edge initializers

$$E_{d2d}$$
 E_{d2w}

$$e^{d2d}$$
 and e^{w2d} .

Method



Heterogeneous Graph Encoder

$$z_{ij} = \text{LeakyReLU}\left(\mathbf{w}_{a}^{T} \left[\mathbf{W}_{q} \mathbf{h}_{i}; \mathbf{W}_{k} \mathbf{h}_{j}; \mathbf{e}_{ij}\right]\right)$$

$$\alpha_{ij} = \operatorname{softmax}_{j}\left(z_{ij}\right) = \frac{\exp\left(z_{ij}\right)}{\sum_{k \in \mathcal{N}_{i}} \exp\left(z_{ik}\right)}$$

$$\mathbf{u}_{i} = \sigma\left(\sum_{j \in \mathcal{N}_{i}} \alpha_{ij} \mathbf{W}_{v} \mathbf{h}_{j}\right),$$

GAT (H, H, H, E) to denote the GAT aggregating layer

H is used for query, key, and value

$$\mathbf{H}_{w}^{1} = \text{FFN} \left(\text{GAT} \left(\mathbf{H}_{w}^{0}, \mathbf{H}_{d}^{0}, \mathbf{E}_{w2d} \right) + \mathbf{H}_{w}^{0} \right)$$

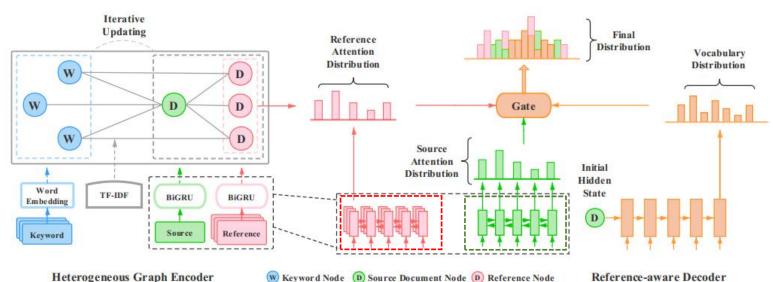
$$\mathbf{H}_{d}^{1} = \text{FFN} \left(\text{GAT} \left(\mathbf{H}_{d}^{0}, \mathbf{H}_{w}^{1}, \mathbf{H}_{w}^{1}, \mathbf{E}_{w2d} \right) + \mathbf{H}_{d}^{0} \right)$$

$$\mathbf{H}_{d}^{1} = \text{FFN} \left(\text{GAT} \left(\mathbf{H}_{d}^{1}, \mathbf{H}_{d}^{1}, \mathbf{H}_{d}^{1}, \mathbf{E}_{d2d} \right) + \mathbf{H}_{d}^{1} \right),$$
we introduce a residual connection and

we introduce a residual connection and position-wise feed-forward (FFN) layer consisting of two linear transformations.

seperate
$$\mathbf{H}_d^I$$
 into \mathbf{d}^s and $\mathbf{D}^r = \{\mathbf{d}^{r_i}\}_{i=1,...,K}$

$$\mathbf{H}_d^I$$
 into \mathbf{d}^s and $\mathbf{D}^r = \{\mathbf{d}^{r_i}\}_{i=1,\dots,K}$



Heterogeneous Graph Encoder

$$\mathbf{M}^r = \{\mathbf{M}^{r_i}\}_{i=1...,K}$$
$$\mathbf{M}^{r_i} = \{\mathbf{m}_j^{r_i}\}_{j=1...,L_{r_i}}$$

$$\mathbf{M}^s = \{\mathbf{m}_i^s\}_{i=1,\dots,L_{\mathbf{x}}}$$

$$\mathbf{h}_{t} = \text{GRU}(\mathbf{e}^{w}(y_{t-1}), \mathbf{h}_{t-1})$$

$$\mathbf{c}_{t} = \text{hier_attn}(\mathbf{h}_{t}, \mathbf{M}^{s}, \mathbf{M}^{r}, \mathbf{D}^{r})$$

$$\tilde{\mathbf{h}}_{t} = \text{tanh}(\mathbf{W}_{c}[\mathbf{c}_{t}; \mathbf{h}_{t}]),$$
(3)

hier_attn

$$\mathbf{c}_{t}^{s} = \sum_{i=1}^{L_{\mathbf{x}}} a_{t,i}^{s} \mathbf{m}_{i}^{s}; \mathbf{c}_{t}^{r} = \sum_{i=1}^{K} \sum_{j=1}^{L_{\mathbf{x}} r_{i}} a_{t,i}^{r} a_{t,j}^{r_{i}} \mathbf{m}_{j}^{r_{i}}$$

$$\mathbf{c}_{t} = g_{ref} \cdot \mathbf{c}_{t}^{s} + (1 - g_{ref}) \cdot \mathbf{c}_{t}^{r},$$

$$(4)$$

where \mathbf{a}_{t}^{s} is a word-level attention distribution over words from the source document using M^s

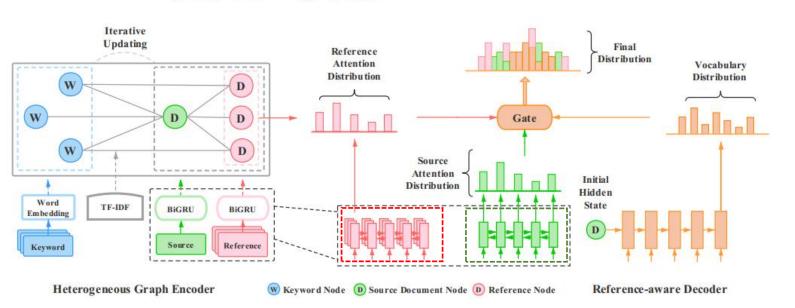
 \mathbf{a}_{t}^{r} is an attention distribution over references using \mathbf{D}^{r} .

 $\mathbf{a}_{t}^{r_{i}}$ is a word-level attention distribution over words from i-th reference using \mathbf{M}^{r_i} .

$$g_{ref} = \operatorname{sigmoid}(\mathbf{w}_{ref}[\mathbf{c}_t^s; \mathbf{c}_t^r])$$

Method

$$\mathbf{H}_d^I$$
 into \mathbf{d}^s and $\mathbf{D}^r = \{\mathbf{d}^{r_i}\}_{i=1,\dots,K}$



$$\mathbf{M}^r = \{\mathbf{M}^{r_i}\}_{i=1...,K}$$
$$\mathbf{M}^{r_i} = \{\mathbf{m}_j^{r_i}\}_{j=1...,L_{r_i}}$$

$$\mathbf{M}^s = \{\mathbf{m}_i^s\}_{i=1,\dots,L_{\mathbf{x}}}$$

hierarchical copy mechanism

$$P_{\mathcal{V}'}(y_t) = p_1 P_{\mathcal{V}}(y_t) + p_2 P_{\mathcal{V}_{\mathbf{x}}}(y_t) + p_3 P_{\mathcal{V}_{\mathcal{X}^r}}(y_t)$$

$$P_{\mathcal{V}}(y_t) = \operatorname{softmax}(\operatorname{MLP}([\mathbf{h}_t; \tilde{\mathbf{h}}_t]))$$

$$P_{\mathcal{V}_{\mathbf{x}}}(y_t) = \sum_{i:x_i = y_t} a_{t,i}^s$$

$$P_{\mathcal{V}_{\mathcal{X}^r}}(y_t) = \sum_{i} \sum_{j:x_j^{r_i} = y_t} a_{t,j}^{r_i}$$

$$\mathbf{p} = \operatorname{softmax}(\mathbf{W}_p[\mathbf{h}_t; \mathbf{h}_t; \mathbf{e}^w(y_{t-1})]) \in \mathbb{R}^3$$

loss

$$\mathcal{L}_{\text{ONE2ONE}}(\theta) = -\sum_{i=1}^{|\mathcal{Y}|} \sum_{t=1}^{L_{\mathbf{y}_i}} \log P_{\mathcal{V}'} \left(y_{i,t} \mid \mathbf{y}_{i,1:t-1}, \mathbf{x}; \theta \right),$$

$$\mathcal{L}_{\text{ONE2SEQ}}(\theta) = -\sum_{t=1}^{L_{\mathbf{y}^{\star}}} \log P_{\mathcal{V}'} \left(y_t^{\star} \mid \mathbf{y}^{\star}_{1:t-1}, \mathbf{x}; \theta \right)$$

	NUS			SemEval			KP20k					
Model	Present		Absent		Present		Absent		Present		Absent	
	F1@5	F1@10	R@10	R@50	F1@5	F1@10	R@10	R@50	F1@5	F1@10	R@10	R@50
CopyRNN (Meng et al., 2017)	0.311	0.266	0.058	0.116	0.293	0.304	0.043	0.067	0.333	0.262	0.125	0.211
CorrRNN (Chen et al., 2018)	0.318	0.278	0.059	0	0.320	0.320	0.041	12	120	120	_	2
TG-Net (Chen et al., 2019b)	0.349	0.295	0.075	0.137	0.318	0.322	0.045	0.076	0.372	0.315	0.156	0.268
KG-KE-KR-M (Chen et al., 2019a)	0.344	0.287	0.123	0.193	0.329	0.327	0.049	0.090	0.400	0.327	0.177	0.278
CopyRNN-GATER (Ours)	0.3744	0.3044	0.1263	0.193_2	0.3663	0.3404	0.056_{1}	0.092_2	0.4021	0.324_{1}	0.186_{0}	0.2851

Table 1: Keyphrase prediction results of all the models trained under ONE2ONE paradigm. The best results are bold. The subscript are corresponding standard deviation (e.g., 0.285_1 means 0.285 ± 0.001).

	NUS				SemEval				KP20k			
Model	Present		Absent		Present		Absent		Present		Absent	
	F1@5	F1@M	F1@5	F1@M	F1@5	F1@M	F1@5	F1@M	F1@5	F1@M	F1@5	F1@M
catSeq (Yuan et al., 2020)	0.323	0.397	0.016	0.028	0.242	0.283	0.020	0.028	0.291	0.367	0.015	0.032
catSeqD (Yuan et al., 2020)	0.321	0.394	0.014	0.024	0.233	0.274	0.016	0.024	0.285	0.363	0.015	0.031
catSeqCorr (Chan et al., 2019)	0.319	0.390	0.014	0.024	0.246	0.290	0.018	0.026	0.289	0.365	0.015	0.032
catSeqTG (Chan et al., 2019)	0.325	0.393	0.011	0.018	0.246	0.290	0.019	0.027	0.292	0.366	0.015	0.032
SenSeNet (Luo et al., 2020)	0.348	0.403	0.018	0.032	0.255	0.299	0.024	0.032	0.296	0.370	0.017	0.036
catSeq-GATER (Ours)	0.3374	0.4184	0.0333	0.054_{4}	0.2573	0.3094	0.026_{4}	0.035_{5}	0.2952	0.384_{1}	0.030_{1}	0.060_{2}

Table 2: Keyphrase prediction results of all the models trained under ONE2SEQ paradigm. The best results are bold. The subscript are corresponding standard deviation (e.g., 0.060_2 means 0.060 ± 0.002).

Model	Pre	Absent		
Model	$F_1@5$	$F_1@M$	$F_1@5$	$F_1@M$
catSeq-GATER	0.295	0.384	0.030	0.060
Input Reference				
- retrieved documents	0.293	0.377	0.026	0.052
- retrieved keyphrases	0.291	0.369	0.018	0.037
- both	0.291	0.367	0.015	0.032
Heterogeneous Graph Encoder				
- d2d edge	0.294	0.379	0.024	0.049
-w2d edge	0.294	0.379	0.026	0.052
- both	0.293	0.371	0.020	0.041
Reference-aware Decoder				
- hierarchical copy	0.293	0.373	0.022	0.042
- hierarchical attention	0.291	0.368	0.018	0.036

Table 3: Ablation study of catSeq-GATER on **KP20k** dataset. All references are ignored in graph encoder when removing d2d edge and the heterogeneous graph becomes homogeneous graph when removing w2d edge.

36.1.1	Pre	esent	Absent			
Model	F1@5	F1@M	F1@5	F1@M		
catSeqD	0.285	0.363	0.015	0.031		
+ GATER	0.294	0.381	0.025	0.051		
catSeqCorr	0.289	0.365	0.015	0.032		
+ GATER	0.296	0.384	0.030	0.060		
catSeqTG	0.292	0.366	0.015	0.032		
+ GATER	0.293	0.380	0.025	0.052		

Table 4: Results of applying our GATER to other baseline models on **KP20k** test set. The best results are bold.

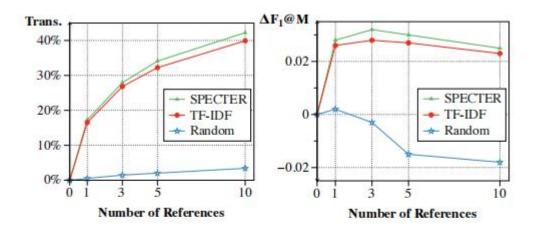


Figure 3: Transforming rate and $\Delta F_1@M$ for absent keyphrases under different types of retrievers on **KP20k** dataset for catSeq-GATER. We study a random retriever, a sparse retriever based on TF-IDF and a dense retriever based on SPECTER.

Document: natural convec	ction in porous annular domains mimetic scheme and family of steady states. natural convection				
of the incompressible fluid	I in the porous media based on the darcy hypothesis (lapwood convection) gives an intriguing				
branching off of one param	eter family of steady patterns, this scenario may be suppressed in computations when governing				
equations are approximated	by schemes which do not preserve the cosymmetry property				
Present Keyphrases	natural convection; mimetic scheme; family of steady states; cosymmetry				
CopyRNN	natural convection; porous media; polar coordinates; mimetic; annular porous domain; porous				
	domain; finite difference; steady states; mimetic scheme;				
KG-KE-KR-M	natural convection; porous media; mimetic scheme; mimetic; polar coordinates;				
CopyRNN-GATER (Ours)	natural convection; porous media; mimetic scheme; cosymmetry; mimetic; darcy hypothesis;				
	finite difference; polar coordinates;				
Absent Keyphrases	darcy law; porous medium; finite difference method				
CopyRNN	convective convection; annular porous media; mimetic method; finite difference method;				
KG-KE-KR-M	cosymmetry convection; mimetic method; darcy law; convective patterns; lapwood property;				
	annular porous media; finite difference method;				
CopyRNN-GATER (Ours)	darcy law; convective patterns; porous medium; multicomponent fluid; finite difference				
	method; family convection; cosymmetry convection; staggered grids; darcy formulation;				

Figure 4: Example of generated keyphrases by different models. The top 10 predictions are compared and some incorrect predictions are omitted for simplicity. The correct predictions are in bold blue and bold red for present and absent keyphrase, respectively. The absent predictions that appear in the references are highlighted in yellow, where only the keyphrases of retrieved documents are considered as references for KG-KE-KR-M.

Thanks